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A general and efficient method is proposed for the resolution of the dynamic interaction
problem between a bridge, discretized by a three-dimensional finite element model, and a
dynamic system of vehicles running at a prescribed speed. The resolution is easily
performed with a step-by-step solution technique using the central difference scheme to
solve the coupled equation system. This leads to a modified mass matrix called a
pseudo-static matrix, for which its inverse is known at each time step without any numerical
effort. The method uses a modal superposition technique for the bridge components. The
coupled system vectors contain both physical and modal components. The physical
components are the degrees of freedom of a vehicle modelled as linear discrete
mass–spring–damper systems. The modal components are the degrees of freedom of a linear
finite element model of the bridge. In this context, the resolution of the eigenvalue problem
for the bridge is indispensable. The elimination of the interaction forces between the two
systems (bridge and vehicles) gives a unique coupled system (supersystem) containing the
modal and physical components. In this study, we duly consider the bridge pavement as
a random irregularity surface. The comparison between this study and the uncoupled
iterative method is performed.
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1. INTRODUCTION

Bridge response induced by moving vehicles is an important aspect in design and structural
evaluation of bridges. Generally, bridge engineers use the dynamic amplification factor
defined as the maximum of dynamic response on the maximum static response to a design
or evaluation of bridge capacity. However, behind this factor, there are a lot of phenomena
that influence the bridge behaviour (response). Many experimental studies [1–4] have
shown that the impact factor is function of different parameters. These important
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parameters are: the characteristics of the vehicles (natural frequencies), the velocity of the
vehicles, the characteristics of the bridge (natural frequencies), the road roughness profile
of the bridge surface, and multiple vehicles and their transverse positions.

It is obvious that a simple beam model cannot precisely represent two- or
three-dimensional behaviour, particularly in the case of a moving vehicle with paths that
are not along the centreline of the bridge. For those reasons, the bridges will be modelled
here with shell, plate and beam elements, while the vehicles will be modelled with two-
or three-dimensional models [5–11].

The moving vehicle loads are time-dependent, because the position of wheel loads
change with time and the suspension of vehicle oscillates, due to irregularities of the bridge
deck and bridge vertical displacement under tires.

There are two ways to simulate the dynamic interaction between bridge and vehicles
(Figure 1). The first one is based on the uncoupled iteration method [1, 5–8, 10, 11], in
which each system (bridge and vehicles) is solved separately and an iterative process in
each time step is performed to find the equilibrium between the bridge and vehicle tires.
For the vehicles with linear suspension types, see references [5–8, 10–12].

Figure 1. Dynamic analysis procedures for bridge and vehicles interaction.
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The other way to simulate the dynamic interaction between bridge and vehicle consists
of solving the super system fully coupled, and the solution is given at each time step
without any iteration.

In this paper, we present an explicit algorithm technique to solve the coupled
dynamic system using a modal superposition method for the bridge structure and
the physical components for the vehicles using Lagrange’s formulation. Thus, the
coupled system vectors contain both modal and physical components. The former are
the degrees of freedom in the modal space of the bridge and the latter are the degrees
of freedom of the vehicles modelled as a linear discrete mass–spring–damper system.
The model takes account of the road roughness through the power spectral density
function [1, 13, 14], the constant speed of each vehicle, the multiple vehicles at different
positions under different trajectories and the dynamic linear behaviour of vehicles and the
bridge.

This method presents advantages and disadvantages. Among some advantages, we can
quote the following: the CPU time is reduced in comparison with the uncoupled iterative
method; easy and compact numerical implementation (super-system of bridge-vehicles);
reduced computer memory storage; no factorization of the global matrix; no iteration in
the computational process.

However, the principal disadvantages are as follows: modal projection in subspace is
indispensable, and if the high frequencies of the bridge participate to the response this will
create a problem in the dynamic response; this method is well adapted only for a few
number of vehicles present on the bridge at the same time (this remark also applies to the
uncoupled modal iterative method).

2. PROBLEM FORMULATION

2.1.   

The randomness of the bridge surface roughness can be described by a periodically
modulated random process. It is specified by its power spectral density function (PSD)
[1, 13, 14], which is given by

Sr (vs )=Ar (vs /vs0)−2, (1)

where Sr (vS ) is the power spectral density (PSD) in m2/cycle/m, Ar is the roughness
coefficient in m2/cycle/m, vs0 is the discontinuity frequency equal to 1/2p (cycle/m) and vS

is the spatial frequency in cycle/m.
From the PSD, a surface profile is generated using the FFT algorithm [13, 14] with the

Monte Carlo simulation, to generate a random number 8 distributed uniformly between
0 and 2p. The road profile in its discrete form is given by [8]

r(x)= s
N

k=1 04Ar0 2pk
Lcvs01

−2 2p

Lc1
1/2

cos (vskx−8k ), (2)

where Dvs =2p/Lc , vsk = kDvs , and Lc is, in general, twice the length of the bridge.
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Figure 2. A 3-D vehicle with seven degrees of freedom (dof).

2.2.  

The vehicle model is presented in Figure 2 [5–8, 15]. The equations of motion of the
system are derived using Lagrange’s formulation [3] as

d
dt 01T

1q̇i1−
1T
1qi

+
1V
1qi

−
1Wd

1q̇i
=Qi (3)

for each of the respective generalized co-ordinates. In equation (3), T and V are,
respectively, the kinematic and potential energy of the system, qi and ith generalized
co-ordinate, Wd is the dissipation energy of the system and Qi is the corresponding
generalized force. When we apply equation (3) to each vehicle model, the equations of
motion of the vehicle are

[Mv ]{Z� }+[Cv ]{Z� }+[Kv ]{Z}= {Fg}− {F�int}, (4)

where {F�int} is the interaction force vector applied on the vehicle, Fg is the force vector
caused by the effect of the gravitation; [Mv ], [Cv ] and [Kv ] are, respectively, the mass,
damping and stiffness matrices of the vehicle and {Z} is the vertical displacement vector
of the vehicle degrees of freedom.

2.3.  

The equations of motion for a bridge discretized by finite elements [5–8, 15] are

[Mb ]{U� }+[Cb ]{U� }+[Kb ]{U}= {Fint
bv }. (5)
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The projection of equation (5) in the modal space of dimension r gives the following
modal equations, if we use the classical Rayleigh damping matrix:

[I]{ÿ}+[x]{ẏ}+[V]{y}=[F]T{Fint
bv }, (6)

[I]= &
···

1
···'r× r

, [x]= &
···

2jjvj
···'r× r

, [V]= &
···

v2
j

···'r× r

,

{U}= s
r

j=1

{fj} yj =[F]{y}, or at element level, {ue}=[Fe]{y}. (7)

Matrix [F] contains r mode shape vectors. In general, six degrees of freedom are assigned
to each node (three translations and three rotations).

2.4. – 

The interaction force of the ith wheel between the bridge and the vehicle is given by

F�int
i =−Fint

bv i= ktiDi + ctiDi . (8)

kti and cti are, respectively, the tire stiffness and tire damping of the ith wheel (Figures 3
and 4), and Di is the relative vertical displacement between the ith wheel and the bridge
deck: Di =−zi + ri + w̄i , where zi is the vertical displacement of the ith wheel, ri is the road
surface roughness under the ith wheel and w̄i is the bridge vertical displacement under the
ith wheel.

Figure 3. Bridge/vehicle interaction at wheel i.
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Figure 4. Bridge/vehicle interaction and bridge pavement effects, for a simple 2-D vehicle.

In a finite element context, w̄ can be obtained using the following equation, where Nj

are the shape functions and we
j the nodal displacements of the neighbourhood nodes of

the ith wheel–bridge point of contact:

w̄= s
NN

j=1

Njwe
j = �N	 �i{U}.

Note that {N	 }i and {N}j are equivalent with only different dimensions (Figure 5).

3. COMPUTATIONAL ALGORITHM

We now present the original algorithm based on a pseudo-static modified mass matrix.
We first take the equations of motion (6), where the interaction nodal force vector applied
by the vehicles on the bridge is

{Fint
bv }= s

nt

i=1

{N	 }iFint
bvi , (9)

where {N	 }i is the vector of the shape functions evaluated at the location of the ith wheel
and nt is the number of wheels. Fint

bvi is given here by

Fint
bvi = kti (zi −(w̄i + ri ))+ cti (żi −(w̄�i + ṙi )), (10)
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with

w̄+ r(x)= �N	 �{U}+ r(x), (11)

w� + ṙ(x)= w̄,xẋ+ w̄,t + ṙ(x)= �N	 ,x�{U}ẋ+ �N	 �{U,t}+ r,xẋ. (12)

Vectors {U} and {U,t} are, respectively, the nodal displacements and velocities.
If we replace w̄, w� , r(x) and ṙ(x) in equation (10) and use equation (7), with v= ẋ, we
obtain

Fint
bvi = kti (zi −(�N	 �i [F]{y}+ ri ))+ cti (żi −((v�N	 ,x�i [F]{y}+ �N	 �i [F]{ẏ})+ ṙi )). (13)

Figure 5. An example to illustrate the equivalence between the two vectors �N�i and �N	 �i under the ith wheel:
(a) global bridge model; (b) finite element model of bridge deck portion.
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With this last equation, equation (6) becomes a system of r coupled equations:

[I]{ÿ}+0[x]+ [F]T0s
nt

i=1

{N	 �icti�N	 �i1[F]1{ẏ}

+0[V]+ [F]T0s
nt

i=1

{N	 }ikti�N	 qi + {N	 }ictiv�N	 ,x�i1[F]1{y}

=[F]T s
nt

i=1

{N	 }i (kti (zi − ri )+ cti (żi − ṙi )). (14)

The equations of motion of the vehicles are given by equation (4), where the interaction
force applied by the bridge on the ith wheel of the vehicle is

F�int
i = kti (w̄i + ri )+ cti (w� i + ṙi ) (15)

and the vector of forces applied to all wheels is

kt1(w̄1 + r1)+ ct1(w� 1 + ṙ1)
···

ktnt (w̄nt + rnt )+ ctnt (w� nt + ṙnt )
g
G

G

G

G

F

f

h
G

G

G

G

J

j

{F�int}= 0
, (16)

···
0 ndv

where ndv is the number of degrees of freedom per vehicle. In equation (15), we assume
that the ith wheel is always in contact with the bridge check. Replacing equations (11) and
(12) into equation (16), we obtain

kt1(�N	 �1[F]{y}+ r1)+ ct1((v�N	 ,x�1[F]{y}+ �N	 �1[F]{ẏ})+ ṙ1)
···

ktnt (�N	 �nt [F]{y}+ rnt )+ ctnt ((v�N	 ,x�nt [F]{y}+ �N	 �nt [F]{ẏ})+ ṙnt )g
G

G

G

G

F

f

h
G

G

G

G

J

j

{F�int}=
0

,

···
0 ndv

(17)

We define the vector

{Z}=6Zl

Zu7, (18)

where Zl is the displacement vector corresponding to the degrees of freedom attached to
the suspension and Zu is the displacement vector corresponding to the degrees of freedom
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attached to the rigid part of the vehicle, without the suspension. Equation (4) can be
rewritten as

$ [Mvl ]
[Mvul ]

[Mvlu ]
[Mvu ]%6Z� l

Z� u7+$ [Cvl ]
[Cvul ]

[Cvlu ]
[Cvu ]%6Z� l

Z� u7+$ [Kvl ]
[Kvul ]

[Kvlu ]
[Kvu ]%6Zl

Zu7= {Fg}+ {F�int}.

(19)

The coupling of equations (14) and (19) gives a super-system containing the modal
components of the bridge and the physical components of the vehicle. Using equations
(14), (16) and (19), we obtain

&[I][0]
[0]

[0]
[Mvl ]
[Mvul ]

[0]
[Mvlu ]
[Mvu ]'8 ÿ

Z� l

Z� u9+ & [x̃]r× r

[A2]r× nt

[0]Tr× nt

[A1]nt× r

[Cvl ]
[Cvul]

[0]nt× r

[Cvlu ]
[Cvu ] '8 ẏ

Z� l

Z� u9
+ & [V	 ]r× r

[B2]r× nt

[0]Tr× nt

[B1]nt× r

[Kvl ]
[Kvul ]

[0]nt× r

[Kvlu ]
[Kvu ] '8 y

Zl

Zu9= {F(x, t)}, (20)

with nt= ndv− nt.
The previous submatrices are given by

[x̃]r× r = &
···

2jjvj
···'+[D]r× r , (21)

[V	 ]r× r = &
···

v2
j

···'+[S]r× r , (22)

where the matrices [D] and [S] are given by

[D]= [F]T0s
nt

j=1

ctj{N	 }j�N	 �j1[F],

[S]= [F]T0s
nt

j=1

ctjv{N	 }j�N	 ,x�j + ktj{N	 }j�N	 �j1[F]

and

[A1]= [A2]T =−&�f1�{N	 }1ct1
···

�fr�{N	 }1ct1

· · ·
···

· · ·

�f1�{N	 }ntctnt
···

�fr�{N	 }ntctnt', (23)

[B1]=−&�f1�{N	 }1kt1
···

�fr�{N	 }1kt1

· · ·
···

· · ·

�f1�{N	 }ntktnt
···

�fr�{N	 }ntktnt', (24)



.   .672

[B2]= [B1]T − v& �N	 ,x�1{f1}ct1
···

�N	 ,x�nt{f1}ctnt

· · ·
···

· · ·

�N	 ,x�1{fr}ct1
···

�N	 ,x�nt{fr}ctnt'. (25)

The load vector is given by

−[F]T0s
nt

i=1

{N	 }i (ktiri + vctiri,x )1
kt1r1 + vct1r1,x

g
G

G

G

G

G

G

G

G

F

f

h
G

G

G

G

G

G

G

G

J

j

{F(x, t)}=6 {0}r×1

{Fg}ndv×17+ ··· . (26)
g
G

G

G

G

F

f

h
G

G

G

G

J

j

ktntrnt + vctntrnt,x

0 ndv×1 (r+ ndv)×1

Using the equations

8 y
Zl

Zu9=6 y
Zv7, (27)

the modified mass matrix can be expressed as

[M	 (t)]=$[I]0 0
[Mv ]%, (28)

where [Mv ] is the mass matrix of the vehicle. In compact form, we take �d�= �yZv�; thus
the equations of motion of the coupled systems are defined as

[M	 (t)]{d� }+[C	 (t)]{d� }+[K	 (t)]{d}= {F(x, t)}. (29)

The inverse of the modified mass matrix is known explicitly at each time step by

[M	 (t)]−1 =$[I][0]
[0]

[Mv ]%
−1

=$[I]−1

[0]
[0]

[Mv ]−1%=$[I][0]
[0]

[Mv ]−1%, (30)

where [M	 (t)]−1 remains constant until the number of vehicles changes. When a new nth
vehicle reaches the bridge deck, the inverse of the modified matrix is easily computed:

[I] 0

0 [Mv ]−1
1

··· 0
G
G

G

G

G

G

G

K

k

G
G

G

G

G

G

G

L

l

0 [Mv ]−1
s

[M	 (t)]−1 =

··· 0

. (31)

0 [Mv ]−1
n
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Figure 6. The computational algorithm for the coupled approach.

[Mv ]−1
n is a small matrix and it is simply stored in the corresponding vehicle routine.

[M	 (t)] is called a pseudo-static mass matrix. To solve the system (29), we use an alternative
step-by-step solution using the central difference method. The simplified algorithm is given
in Figure 6.

4. NUMERICAL EXAMPLES

4.1.  1:  - 

To validate the proposed formulation and its implementation, a dynamic analysis has
been performed for a simply supported beam subjected to a two-foot (two degrees of
freedom) system moving [9] at a constant speed (Figure 7). In the present example, the
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Figure 7. A beam subjected to a moving two-dof dynamic system.

velocity is represented by the speed parameter: a=T1/t= vT1/L, where T1 is the
fundamental period of the beam and L is the length of the beam. The results from this
analysis are compared with those shown in reference [9]. The parameters used for the
simulation are shown in Table 1. To examine the effect of damping, two cases have been
considered: case 1 without damping and case 2 with Rayleigh damping. Given the modal
damping ratios for the first two modes, which may be determined by experimental modal
analysis technique, the coefficients a and b can be computed [15].

The results obtained for case 1 are shown in Figures 8–10. Figure 8 shows the dynamic
deflection at the centre of the beam for various speeds. The dynamic response of the
moving system for the vertical displacements is shown in Figure 9. The response curves
agree well with those found in reference [9]. The validity of the present formulation for
a general moving dynamic system on a bridge can also be inferred from the rotational
response of the moving system. As shown in Figure 8, the results agree well with those
found in reference [9]. Those results provide further confidence that this new formulation
and its implementation have been successful.

The impact factors obtained in the simulation (cases 1 and 2) are shown in Table 2 and
Figure 11. As expected, those factors decrease with the presence of damping.

T 1

Data for the problem with a beam subjected to a moving two-dof
dynamic system

Data of the bridge Data of the vehicle

L=1·1938 m g=9·81 m/s2

r=2·9602×103 kg/m3 M=5·40247 kg
A=0·51×10−2 m2 Iu =0·56825 kg m2

I=0·9448×10−8 m4 k1 =2·164×108 N/m
E=10·48×1010 N/m2 k2 =1·803×108 N/m

aI =0·348 m, a2 =0·371 m, r(x)=0

Case 1 Case 1
j1 = j2 =0 c1 = c2 =0

Case 2 Case 2
j1 =2%; j2 =5% c1 =88·68 Ns/m, c2 =78·41 Ns/m
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Figure 8. The central dynamic deflection of a simply supported beam subjected to a two-dof dynamic system,
case 1: q, [9] a=0·31; w, [ 9] a=1·0; ×, [9] a=1·5; ——, a=0·31; - - -, a=1·0; —-—, a=1·5.

4.2.  2:  - 

In this second example, we present the transient vibration of a bridge modelled with
rectangular plate, discretized with 4×10 plate elements [16] (Table 3 and Figure 12). This
structure is loaded by a moving three-dimensional vehicle system with seven
degrees-of-freedom (Figure 2 and Table 4). In oder to validate the present formulation of
the coupled method, the results are compared with those available in the literature using
the uncoupled method [7, 8]. The vehicle crosses the bridge on the central line at a constant
speed, and the first 20 natural frequencies have been selected in the analysis (Table 3).

First, we analyse the convergence of the central difference method. The stability
condition [15] gives Dtcr =T20 ×0·318=0·0034 s. Results are shown in Figures 13–15 for
the dynamic deflection at the plate centre point c for three different speeds of the vehicle.

Figure 9. The rotational response of the two-dof moving dynamic system with a constant velocity, case 1:
q, [9] a=0·31; w, [9] a=1·0; ×, [9] a=1·5; ——, a=0·31; - - -, a=1·0; —-—, a=1·5.
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Figure 10. The vertical response of the two-dof moving dynamic system with a constant velocity, case 1: q,
[9] a=0·31; w, [9] a=1·0; ×, [9] a=1·5; ——, a=0·31; - - -,, a=1·0; —-—, a=1·5.

T 2

Impact factors for a simply supported beam crossed by a two-dof moving dynamic system

Case 1 Case 2
ZXXXXXXXCXXXXXXXV ZXXXXXXXCXXXXXXXV

a=T1/t Present method Reference [9] Present method Reference [9]

0·31 1·266 1·246 1·214 1·173
1·0 1·396 1·381 1·361 1·342
1·5 1·603 1·582 1·560 1·535
2·0 1·685 1·665 1·635 1·616
2·5 1·667 1·651 1·619 1·601
3·0 1·610 1·590 1·570 1·550

Figure 11. Dynamic amplification factors of a simply supported beam subjected to a two-dof moving dynamic
system with a constant velocity (a=T1/t): r, case 1; e, case 2; q, [9] case 1; w, [9] case 2.
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Figure 12. A plate bridge under a moving vehicle: E=3·0×1010 N/m2, r=3500 kg/m3, n=0·2, h=0·8 m,
b=8 m and L=80 m.

T 3

Numerical results: frequencies (Hz)

Natural frequencies of the bridge Natural frequencies of the vehicle

f1 =0·52 f1 =2·310 f5 =5·940
f2 =2·16 f2 =2·780 f6 =6·810
· · · f3 =2·978 f7 =7·960
f20 =93·33 f4 =4·954

We should note that the response curves obtained by the coupled method (present
formulation) are in good agreement with those obtained by the standard uncoupled
method [6–8], using Newmark-b method and Dt=0·01 s. In Figure 13 a small difference
is shown between results, using the uncoupled algorithm and coupled with a time step
equal to 0.003 s, because vehicles move at low velocity; the behaviour of the bridge is a
quasi-static case. At this velocity, the moving vehicle is equivalent to a concentrated
propagation wave. However, this problem is easily resolved with Dt equal to 0·002 s.

Finally, in the second case, we analyse the influence of the high frequency of vehicle
(fvmax ) on the stability conditions of the present formulation by changing the values of the
stiffness coefficients of the vehicle. Two cases have been selected: fvmax =79 Hz and
fvmax =123 Hz.

In the first case, the results for the dynamic deflection are shown in Figure 16. All the
curves are the same when the time step used is less than or equal to Dtcr .

T 4

Data of vehicle with seven dof (Figure 2)

g=9·81 m/s2, Mv=1460 kg
Iu =1516 Nms2, Ia =449 kg m2

k1 = k2 = k3 = k4 =0·399×106 N/m
kt1 = kt2 = kt3 = kt4 =0·351×106 N/m
cI = c3 =23 210 Ns/m, c2 = c4 =5180 Ns/m
ctI = ct2 = ct3 = ct4 =800 Ns/m
m1 =m3 =800 kg, m2 =m4 =710 kg
a1 = 0·35, a2 =0·65 m, a3 = a4 =0·5
s1 =2·66 m, s2 =1·5 m, hv =1·2 m
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Figure 13. The vertical central deflection wc of the bridge as a function of vehicle position; vehicle speed
v=8 m/s: w, coupled method, Dt=0·03 s; ——, modal uncoupled method, Dt=0·01 s; e, coupled method,
Dt=0·02 s.

The results of the second case are shown in Figure 17. We observe the numerical
instability phenomena because the selected time step fails to integrate all modes. The
calculated response is therefore expected to be unbounded because the highest
frequency of the vehicle is greater than the highest frequency of the bridge. In fact, the
time step does satisfy the stability criterion when DtETmax ×0·318=0·0034 s, and
Tmax =Max (Tveh , TBridge ). In this case we find that this value is controlled by the vehicle
value: Dtcr =(1/123)×0·318=0·00258 s. This problem is usually avoided because, in
practice, the highest selected frequency of the bridge should be greater than those of the
vehicles.

Figure 14. The vertical central deflection wc of the bridge as a function of vehicle position; vehicle speed
v=20 m/s: w, coupled method, Dt=0·03 s; e, uncoupled method, Dt=0·01 s.
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Figure 15. The vertical central deflection wc of the bridge as a function of vehicle position; vehicle speed
v=40 m/s: w, coupled method Dt=0·03 s; e, uncoupled method Dt=0·01 s.

4.3. 

In this paragraph we present computational results to compare the proposed method
to the uncoupled iterative method.

Example 2 of this paper: an example of transient vibrations of a plate simply supported
under the effect of 3-D moving vehicles with seven degrees of freedom (Figure 12).

Two-beam mixed bridge [7]: an example of transient vibration of a bridge with one-span
simply supported beam under the effect of 3-D moving vehicles with seven degrees of
freedom; the bridge is modelled with finite element shells [16] and 3-D beams elements
[7, 18], (Figure 18).

Figure 16. The vertical central deflection wc of the bridge as a function of vehicle position (vehicle speed:
v=80 m/s) where fvmax =79 Hz: w, coupled method, Dt=0·0014 s; e, coupled method, Dt=0·0014 s; W,
coupled method, Dt=0·003 s.
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Figure 17. The instability of the central difference method in the coupled formulation problem (v=80 m/s),
where fvmax =123 Hz.

Senneterre concrete bridge, Quebec, Canada [7, 18]: an example of transient vibration of
a bridge with three independent spans simply supported under the effect of 3-D moving
vehicles with seven degrees of freedom; the bridge is modelled with finite element shells
[16] and 3-D beam elements [7, 18] (Figure 19).

Figure 18. A two-beam mixed bridge under a moving vehicle: (a) bridge; (b) model.
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Figure 19. The Senneterre concrete bridge: (a) bridge model and transverse section representation; (b) finite
element representation.

We conclude from table 5 that: in all cases the uncoupled iteration method applied in
the full space (no modal reduction) takes the highest computational time; except for the
first case, the fully coupled method (without any iteration) is the most performant one;
and the modal uncoupled iteration method is more efficient than the full space uncoupled
iteration method.

T 5

Relative computational times for transient vibrations of different bridges, using coupled and
uncoupled methods

Relative CPU time Characteristics

(a) Plate example
Coupled method 0·5 20 modes
Modal uncoupled iterative method 0·5 20 modes
Uncoupled iterative method 1·0 145 degrees of freedom

(b) Two-beam mixed bridge
Coupled method 0·3 10 modes
Modal uncoupled iterative method 0·4 10 modes
Uncoupled iterative method 1·0 1134 degrees of freedom

(c) Senneterre concrete bridge
Coupled method 0·2 8 modes
Modal uncoupled iterative method 0·3 8 modes
Uncoupled iterative method 1·0 5166 degrees of freedom
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5. CONCLUSIONS

A general finite element formulation for the solution of the dynamic interaction problem
between a bridge and vehicles has been presented. It is based on a new and original coupled
component approach using a modified pseudo-static mass matrix. A central difference
scheme is used successfully to solve this problem.

Numerical simulation results obtained from the proposed formulation are in excellent
agreement with those reported in the literature. This validates the procedure and its
implementation presented in the paper. The formulation is general because it is available
for all kinds of dynamic systems of vehicles, and also because it duly considers the bridge
pavement as a random surface irregularity.

This new formulation with the suggested organization of the components, introduces
the use of the central difference method very appropriately, since the inverse of the
pseudo-static mass matrix is known at each time step without any numerical endeavour.

There is no limitation concerning the complexity (number of dof) of the bridge structure
to be analyzed if the stability criterion can be estimated and satisfied.
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APPENDIX: NOTATION

dof degrees of freedom
Sr (vr ) power spectral density of the road surface (m2/cycle/m)
Ar roughness coefficient (m2/cycle/m)
vs spatial frequency (cycle/m)
vso discontinuity frequency (=1/2)
FFT Fast Fourier Transform
r(x) road profile (m)
Dvs frequency step
[Mv ], [Cv ], [Kv ] mass, damping and stiffness matrices of the vehicle
{Z}, {Z� }, {Z� } vertical displacement, velocity and acceleration vectors of the vehicle
{Fg} force vector caused by the effect of the gravitation
{F�int} interaction force vector applied on the vehicle
[Mb ], [Cb ], [Kb ] mass, damping and stiffness matrices of the bridge
{u}, {u̇}, {ü} vertical displacement, velocity and acceleration vectors of the bridge
[F] matrix of the r eigenvectors of the structure
[Fe] matrix of the r eigenvectors of the element e
{y} modal response
�N	 �i , �N�i shape fractions evaluated at the contact point i (dimensions of �N	 �i ) and �N�i are

respectively the total number of dof and the total number of nodes per element
kti , cti tire stiffness and damping coefficient of the ith wheel
w̄i vertical displacement at the ith wheel
ri road surface roughness under the ith wheel
{F�int

bv } interaction force applied on the bridge by the ith wheel
ndv number of degrees of freedom per vehicle
nt number of wheels or tires per vehicle
vj jth pulsation of the bridge
[D] numerical damping matrix
[M	 ] modified mass matrix
Dt time step
Tmax maximum period


